事業者名	石川県									
機器名	3次元デジタイザ									
写真										
特徴・用途	非接触で物体の形状をデータ化することができる装置。入手データを使ったCADデータの作成や、設計CAD データと実物との誤差評価が可能で、品質管理やリバースエンジニアリングに用いられる。									
設置場所	石川県工業試験場 精密測定室									
利用状況	4.	稼働日数	依頼試験・ 依頼分析 (件)	技術指導 (件)	試験設備貸出・利用		受託研究•	その他	利用件数	
	年月	(日)			件数(件)	時間(時間)	・共同研究 (件)	(件)	計(件)	
	H 26年1月								0	
	H 26年2月	10						1	1	
	H 26年3月	11						1	1	
	H 26年4月	14		2				1	3	
	H 26年5月	16		3	8	37	2		13	
	H 26年6月	14		1	6	21			7	
	H 26年7月	12	1	3	3	12			7	
	H 26年8月	13	1	2	3	38	2	1	9	
	H 26年9月	13		1	3	15	2	1	7	
	H 26年10月	12		1	3	21			4	
	H 26年11月	13		2	7	32	2		11	
	H 26年12月	11		1	3	14	2		6	
利用者等の声	・造作物の形状把握が容易になり、加工工程の改善や新たな加工技術の開発のハードルが下がり、スピーディー、低コストな新製品開発・製品改良に役立てられる。 ・開発製品の時間による変化や、使用による変化などの結果予測が容易となり、製品の開発・改良効率が上昇した。									
研究開発事例 等	〈コンピュータによる解析の最適化〉・製品開発においては、製品に生じる変形を予測する必要があり、試作の手間を減らすためコンピュータ解析を利用していたが、その解析精度と実物との間でズレが生じる問題があった。・実際に製品を変形させた際の形状を三次元デジタイザで測定し、コンピュータ解析の結果と比較検証を行い、ズレの削減手法を研究している。この解析精度向上によって、製品の開発・改良スピード向上とコスト削減につなげられる。									
補助事業概要 の広報資料	http://ri	http://ringring-keirin.jp/shinsei/document/list/kikai/h25/pdf/25-023koho.pdf								

事業者名	石川県										
機器名	蛍光X線分析装置										
写真											
特徴·用途	元素の種類と含有量を分析する装置。 液体試料の分析が可能で、精度も高く、製造工程での管理分析や新素材開発などの用途に利用される。										
設置場所	石川県工業試験場 発光·X線分析室										
利用状況	年月	稼働日数	依頼試験・ 依頼分析 (件)	技術指導 (件)	試験設備	貸出・利用時間(時間)	受託研究· 共同研究 (件)	その他 (件)	利用件数計(件)		
	H 26年1月		(117				(117		0		
	H 26年2月	10	6	2			1		9		
	H 26年3月	11	2				2	3	7		
	H 26年4月	10	1				1	2	4		
	H 26年5月	11	2				1	3	6		
	H 26年6月	12	3				2	3	8		
	H 26年7月	10	2				1	4	7		
	H 26年8月	10	1				2	2	5		
	H 26年9月	12	3	2			1	5	11		
	H 26年10月	11	3				1	2	6		
	H 26年11月	14	2					4	6		
	H 26年12月	11	2					5	7		
利用者等の声	・水分中の微成分の分析が、迅速かつ高精度に実施することができ、品質管理に大いに役立っている。 ・(試験分析の前処理が簡素化され、スピーディーな分析が可能となったことで)クレームに対する迅速な対応ができた。										
研究開発事例 等		・物質の成分分析がスピーディーかつ高精度に行えるようになったことから、アルミスラッジを利用した珪藻 土レンガや高耐熱・高断熱レンガの研究開発に取り組んでいる。									
補助事業概要 の広報資料	http://ringring-keirin.jp/shinsei/document/list/kikai/h25/pdf/25-023koho.pdf										